SepBox: \(\mathcal{S}_{box}\)
The \(\mathcal{S}_{box}\) is separating inner and outer parts of a box around a support box of \(\mathbb{R}^n\).
Definition
Important
definition incoming
s = SepBox(b)
s.separate(x_in, x_out)
SepBox s(b);
s.separate(x_in, x_out);
Optimality
This separator is optimal as it is based on other separators optimality.
Example
Let consider a support box \([\mathbf{b}] = [1, 2]\times[3, 4]\) for our separator.
# Build the separator
b = IntervalVector([[1, 2], [3, 4]])
sep_box = SepBox(b)
# Setup the initial box
box = IntervalVector(2, [0, 5])
# Graphics
vibes.beginDrawing()
vibes.newFigure("Set inversion")
vibes.setFigureProperties({"x":100, "y":100, "width":500, "height":500})
SIVIA(box, sep_box, 0.1, fig_name="Set inversion")
vibes.endDrawing()
// Build the separator
IntervalVector b{{1, 2}, {3, 4}};
SepBox sep_box(b);
// Setup the initial box
IntervalVector box(2, {0, 5});
// Graphics
vibes::beginDrawing();
vibes::newFigure("Set inversion");
vibes::setFigureProperties(vibesParams("x",100, "y",100, "width",500, "height",500));
SIVIA(box, sep_box, 0.1, "Set inversion");
vibes::endDrawing();