SepBox: \(\mathcal{S}_{box}\)

The \(\mathcal{S}_{box}\) is separating inner and outer parts of a box around a support box of \(\mathbb{R}^n\).

Definition

Important

definition incoming

s = SepBox(b)
s.separate(x_in, x_out)

Optimality

This separator is optimal as it is based on other separators optimality.

Example

Let consider a support box \([\mathbf{b}] = [1, 2]\times[3, 4]\) for our separator.

# Build the separator
b = IntervalVector([[1, 2], [3, 4]])
sep_box = SepBox(b)

# Setup the initial box
box = IntervalVector(2, [0, 5])

# Graphics
vibes.beginDrawing()
vibes.newFigure("Set inversion")
vibes.setFigureProperties({"x":100, "y":100, "width":500, "height":500})
SIVIA(box, sep_box, 0.1, fig_name="Set inversion")
vibes.endDrawing()
../../_images/SepBox.png

Fig. 50 SIVIA on a SepBox with a support box \([\mathbf{b}] = [1, 2]\times[3, 4]\).