FixPoint of a separator The fixpoint of a separator is computed by calling the "::"separate function on a given box until the Hausdorff distance between two iterations is less than a given ratio. This operation can be seen as a contractor on the boundary of the solution set.
More...
|
class | ColorMap |
| Associates colors to a range of values. More...
|
|
class | ConnectedSubset |
| Multi-dimensional paving representation of a connected subset. More...
|
|
class | ContractorNetwork |
| Graph of contractors and domains that model a problem in the constraint programming framework. Heterogeneous domains can be handled in the same network, which allows to deal with a wide variety of problems such as non-linear equations, differential systems, delays or inter-temporal equations. More...
|
|
class | CtcBox |
| Contractor around a box. More...
|
|
class | CtcCartProd |
| Cartesian product of contractors \(\mathcal{C}_1\times\dots\times\mathcal{C}_n\). More...
|
|
class | CtcCN |
| static contractor on a contractor network object More...
|
|
class | CtcConstell |
| CtcConstell class. More...
|
|
class | CtcDelay |
| \(\mathcal{C}_{delay}\) that contracts the tubes \([x](\cdot)\) and \([y](\cdot)\) with respect to their delay \([\tau]\) according to the delay constraint \(\mathbf{x}(t)=\mathbf{y}(t+\tau)\) More...
|
|
class | CtcDeriv |
| \(\mathcal{C}_{\frac{d}{dt}}\) that contracts a tube \([x](\cdot)\) with respect to its derivative tube \([v](\cdot)\) according to the constraint \(\dot{x}(\cdot)=v(\cdot)\) More...
|
|
class | CtcDist |
| Distance constraint between two 2d vectors. More...
|
|
class | CtcEval |
| \(\mathcal{C}_\textrm{eval}\) that contracts a tube \([y](\cdot)\) with respect to its derivative tube \([w](\cdot)\) and a measurement \([t]\times[z]\) according to the constraints \(z=y(t)\) and \(\dot{y}(\cdot)=w(\cdot)\) More...
|
|
class | CtcFromSep |
| Build a contractor with a separator Wrt the. More...
|
|
class | CtcFunction |
| Generic static \(\mathcal{C}\) that contracts a box \([\mathbf{x}]\) or a tube \([\mathbf{x}](\cdot)\) according to the constraint \(\mathbf{f}(\mathbf{x})=\mathbf{0}\) or \(\mathbf{f}(\mathbf{x})\in[\mathbf{y}]\). It stands on the CtcFwdBwd of IBEX (HC4Revise). More...
|
|
class | CtcLohner |
| \(\mathcal{C}_\textrm{lohner}\) that contracts a tube \([\mathbf{x}](\cdot)\) according to a differential constraint \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\) More...
|
|
class | CtcPicard |
| CtcPicard class. More...
|
|
class | CtcPolar |
| Minimal contractor for the polar constraint: x = rho*cos(theta) y = rho*sin(theta) theta = angle(x,y) sqr(rho) = sqr(x)+sqr(y) More...
|
|
class | CtcQInterProjF |
| Q-intersection contractor. More...
|
|
class | CtcSegment |
| Minimal contractor for a segment. More...
|
|
class | CtcStatic |
| Generic static \(\mathcal{C}\) that contracts a tube \([\mathbf{x}](\cdot)\) with some IBEX contractor (for boxes, possibly including time). The contractor will be applied on each slice and gate. More...
|
|
class | CtcTransform |
| Transformation of a separator with an inversible transformation T(S)(X) = { ffwd*Sin*fbwd(X), ffwd*Sout*fbwd(X)} Using a function and its inverse is less pessimism than using a forward / backward propagation (see: sepInverse) More...
|
|
class | DomainsSizeException |
| Exception raised if the size (dimension) of domains are not consistent together, and with the contractor definition. More...
|
|
class | DomainsTypeException |
| Exception raised if the domains connected to a contractor in a CN are not consistent with the contractor definition. More...
|
|
class | DynamicalItem |
| Abstract class for common properties of Tube, TubeVector, Slice, Trajectory, TrajectoryVector objects. More...
|
|
class | DynCtc |
| Contractor interface. More...
|
|
class | Exception |
| Root class of all exceptions raised by Codac. More...
|
|
class | Figure |
| Two-dimensional graphical item. More...
|
|
struct | hsv |
| Represents an HSV value. More...
|
|
class | IntervalVar |
| todo More...
|
|
class | IntervalVectorVar |
| todo More...
|
|
class | Paving |
| Multi-dimensional paving as representation of a set. More...
|
|
class | PdcInPolygon |
| Tests if a box is inside a polygon. More...
|
|
class | RandTrajectory |
| One dimensional random trajectory \(x(\cdot)\), used to represent noises. More...
|
|
struct | rgb |
| Represents an RGB value. More...
|
|
class | SepBox |
| Separator \(\mathcal{S}_{box}\) that separates two boxes according to the constraint \(\mathbf{x}\in[\mathbf{b}]\). More...
|
|
class | SepCtcPairProj |
| projection of a separator using ibexlib algorithm More...
|
|
class | SepFixPoint |
| Fix point of a Separator. More...
|
|
class | SepFunction |
| Generic static \(\mathcal{S}\) that separates two boxes according to the constraint \(\mathbf{f}(\mathbf{x})=\mathbf{0}\) or \(\mathbf{f}(\mathbf{x})\in[\mathbf{y}]\). It stands on the SepFwdBwd of IBEX (involving HC4Revise). More...
|
|
class | SepPolarXY |
| Separator for point in sector. A sector is defined by its center, a distance and an angle (with uncertainty). More...
|
|
class | SepPolygon |
| Separator for Point inside a polygon. More...
|
|
class | SepProj |
| Projection of a separator. More...
|
|
class | SepTransform |
| Image of a separator by a function \(f\) where an analytic expression of \(\mathbf{f}^{-1}\) is avaiable. the computation is less pessimism than using a classical a forward / backward propagation (. More...
|
|
class | Set |
| Multi-dimensional interval-based representation of a set. More...
|
|
class | SIVIAPaving |
| Paving resulting from a Set-Inversion Via Interval Analysis. More...
|
|
class | Slice |
| Slice \(\llbracket x\rrbracket(\cdot)\) of a one dimensional tube and made of an envelope and two gates. More...
|
|
class | Tools |
| Basic features provided here in order to avoid overkill dependencies. More...
|
|
class | TPlane |
| Temporal representation of loops. More...
|
|
class | Trajectory |
| One dimensional trajectory \(x(\cdot)\), defined as a temporal map of values. More...
|
|
class | TrajectoryVector |
| n-dimensional trajectory \(\mathbf{x}(\cdot)\), defined as a temporal map of vector values More...
|
|
class | Tube |
| One dimensional tube \([x](\cdot)\), defined as an interval of scalar trajectories. More...
|
|
class | TubePaving |
| Multi-dimensional paving as projection of a vector tube. More...
|
|
class | TubeVector |
| n-dimensional tube \([\mathbf{x}](\cdot)\), defined as an interval of n-dimensional trajectories More...
|
|
class | VIBesFig |
| Two-dimensional graphical item based on the VIBes viewer. More...
|
|
class | VIBesFigMap |
| Two-dimensional graphical item to project dynamical items (tubes, trajectories, etc.) on a map. More...
|
|
class | VIBesFigPaving |
| Two-dimensional graphical item to display a Paving object. More...
|
|
class | VIBesFigTube |
| Two-dimensional graphical item to display scalar tubes or trajectories. More...
|
|
class | VIBesFigTubeVector |
| Multi-view item to display vector tubes or trajectories. More...
|
|
|
TubeVector | CAPD_integrateODE (const Interval &tdomain, const Function &f, const IntervalVector &x0, double tube_dt=0., int capd_order=20, double capd_dt=0.) |
| Integrates the autonomous ODE \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})\) using CAPD.
|
|
TubeVector | CAPD_integrateODE (const Interval &tdomain, const TFunction &f, const IntervalVector &x0, double tube_dt=0., int capd_order=20, double capd_dt=0.) |
| Integrates the non-autonomous ODE \(\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x},t)\) using CAPD.
|
|
const IntervalMatrix | operator| (const IntervalMatrix &x, const IntervalMatrix &y) |
| \([\mathbf{X}]\sqcup[\mathbf{Y}]\)
|
|
const IntervalMatrix | operator& (const IntervalMatrix &x, const IntervalMatrix &y) |
| \([\mathbf{X}]\cap[\mathbf{Y}]\)
|
|
int | operator& (TimePropag a, TimePropag b) |
| Allows tests on combinations of propagation ways.
|
|
TimePropag | operator| (TimePropag a, TimePropag b) |
| Allows a combination of propagation ways.
|
|
CtcCartProd | cart_prod (Ctc &c1, Ctc &c2) |
| Cartesian product of contractors from two Ctc objects.
|
|
CtcCartProd | cart_prod (const ibex::Array< Ctc > &array) |
| Cartesian product of contractors from an ibex::Array.
|
|
const std::string | rgb2hex (rgb rgb_value, const char *prefix="#") |
| Represents an RGB value in a HTML standard.
|
|
rgb | hsv2rgb (hsv hsv_value) |
| Converts HSV to RGB.
|
|
hsv | rgb2hsv (rgb rgb_value) |
| Converts RGB to HSV.
|
|
rgb | make_rgb (int r, int g, int b, int alpha=255) |
| Makes an RGV value from integers.
|
|
rgb | make_rgb (float r, float g, float b, float alpha=1.) |
| Makes an RGV value from floats.
|
|
hsv | make_hsv (int h, int s, int v, int alpha=100) |
| Makes an HSV value from integers.
|
|
hsv | make_hsv (float h, float s, float v, float alpha=1.) |
| Makes an HSV value from floats.
|
|
int | operator& (SetValue a, SetValue b) |
| Allows tests on combinations of two SetValue.
|
|
SetValue | operator| (SetValue a, SetValue b) |
| Union of two SetValue values.
|
|
|
const Trajectory | cos (const Trajectory &x) |
| \(\cos(x(\cdot))\)
|
|
const Trajectory | sin (const Trajectory &x) |
| \(\sin(x(\cdot))\)
|
|
const Trajectory | abs (const Trajectory &x) |
| \(\mid x(\cdot)\mid\)
|
|
const Trajectory | sqr (const Trajectory &x) |
| \(x^2(\cdot)\)
|
|
const Trajectory | sqrt (const Trajectory &x) |
| \(\sqrt{x(\cdot)}\)
|
|
const Trajectory | exp (const Trajectory &x) |
| \(\exp(x(\cdot))\)
|
|
const Trajectory | log (const Trajectory &x) |
| \(\log(x(\cdot))\)
|
|
const Trajectory | tan (const Trajectory &x) |
| \(\tan(x(\cdot))\)
|
|
const Trajectory | acos (const Trajectory &x) |
| \(\arccos(x(\cdot))\)
|
|
const Trajectory | asin (const Trajectory &x) |
| \(\arcsin(x(\cdot))\)
|
|
const Trajectory | atan (const Trajectory &x) |
| \(\arctan(x(\cdot))\)
|
|
const Trajectory | cosh (const Trajectory &x) |
| \(\cosh(x(\cdot))\)
|
|
const Trajectory | sinh (const Trajectory &x) |
| \(\sinh(x(\cdot))\)
|
|
const Trajectory | tanh (const Trajectory &x) |
| \(\tanh(x(\cdot))\)
|
|
const Trajectory | acosh (const Trajectory &x) |
| \(\mathrm{arccosh}(x(\cdot))\)
|
|
const Trajectory | asinh (const Trajectory &x) |
| \(\mathrm{arcsinh}(x(\cdot))\)
|
|
const Trajectory | atanh (const Trajectory &x) |
| \(\mathrm{arctanh}(x(\cdot))\)
|
|
const Trajectory | atan2 (const Trajectory &y, const Trajectory &x) |
| \(\mathrm{arctan2}(y(\cdot),x(\cdot))\)
|
|
const Trajectory | atan2 (const Trajectory &y, double x) |
| \(\mathrm{arctan2}(y(\cdot),x)\)
|
|
const Trajectory | atan2 (double y, const Trajectory &x) |
| \(\mathrm{arctan2}(y, x(\cdot))\)
|
|
const Trajectory | min (const Trajectory &y, const Trajectory &x) |
| \(\min(y(\cdot),x(\cdot))\)
|
|
const Trajectory | min (const Trajectory &y, double x) |
| \(\min(y(\cdot),x)\)
|
|
const Trajectory | min (double y, const Trajectory &x) |
| \(\min(y, x(\cdot))\)
|
|
const Trajectory | max (const Trajectory &y, const Trajectory &x) |
| \(\max(y(\cdot),x(\cdot))\)
|
|
const Trajectory | max (const Trajectory &y, double x) |
| \(\max(y(\cdot),x)\)
|
|
const Trajectory | max (double y, const Trajectory &x) |
| \(\max(y, x(\cdot))\)
|
|
const Trajectory | pow (const Trajectory &x, int p) |
| \(x^p(\cdot)\)
|
|
const Trajectory | pow (const Trajectory &x, double p) |
| \(x^p(\cdot)\)
|
|
const Trajectory | root (const Trajectory &x, int p) |
| \(\sqrt[p]{x(\cdot)}\)
|
|
const Trajectory | operator+ (const Trajectory &x) |
| \(x(\cdot)\)
|
|
const Trajectory | operator+ (const Trajectory &x, const Trajectory &y) |
| \(x(\cdot)+y(\cdot)\)
|
|
const Trajectory | operator+ (const Trajectory &x, double y) |
| \(x(\cdot)+y\)
|
|
const Trajectory | operator+ (double x, const Trajectory &y) |
| \(x+y(\cdot)\)
|
|
const Trajectory | operator- (const Trajectory &x) |
| \(-x(\cdot)\)
|
|
const Trajectory | operator- (const Trajectory &x, const Trajectory &y) |
| \(x(\cdot)-y(\cdot)\)
|
|
const Trajectory | operator- (const Trajectory &x, double y) |
| \(x(\cdot)-y\)
|
|
const Trajectory | operator- (double x, const Trajectory &y) |
| \(x-y(\cdot)\)
|
|
const Trajectory | operator* (const Trajectory &x, const Trajectory &y) |
| \(x(\cdot)\cdot y(\cdot)\)
|
|
const Trajectory | operator* (const Trajectory &x, double y) |
| \(x(\cdot)\cdot y\)
|
|
const Trajectory | operator* (double x, const Trajectory &y) |
| \(x\cdot y(\cdot)\)
|
|
const Trajectory | operator/ (const Trajectory &x, const Trajectory &y) |
| \(x(\cdot)/y(\cdot)\)
|
|
const Trajectory | operator/ (const Trajectory &x, double y) |
| \(x(\cdot)/y\)
|
|
const Trajectory | operator/ (double x, const Trajectory &y) |
| \(x/y(\cdot)\)
|
|
const Tube | cos (const Tube &x) |
| \(\cos([x](\cdot))\)
|
|
const Tube | sin (const Tube &x) |
| \(\sin([x](\cdot))\)
|
|
const Tube | abs (const Tube &x) |
| \(\mid[x](\cdot)\mid\)
|
|
const Tube | sqr (const Tube &x) |
| \([x]^2(\cdot)\)
|
|
const Tube | sqrt (const Tube &x) |
| \(\sqrt{[x](\cdot)}\)
|
|
const Tube | exp (const Tube &x) |
| \(\exp([x](\cdot))\)
|
|
const Tube | log (const Tube &x) |
| \(\log([x](\cdot))\)
|
|
const Tube | tan (const Tube &x) |
| \(\tan([x](\cdot))\)
|
|
const Tube | acos (const Tube &x) |
| \(\arccos([x](\cdot))\)
|
|
const Tube | asin (const Tube &x) |
| \(\arcsin([x](\cdot))\)
|
|
const Tube | atan (const Tube &x) |
| \(\arctan([x](\cdot))\)
|
|
const Tube | cosh (const Tube &x) |
| \(\cosh([x](\cdot))\)
|
|
const Tube | sinh (const Tube &x) |
| \(\sinh([x](\cdot))\)
|
|
const Tube | tanh (const Tube &x) |
| \(\tanh([x](\cdot))\)
|
|
const Tube | acosh (const Tube &x) |
| \(\mathrm{arccosh}([x](\cdot))\)
|
|
const Tube | asinh (const Tube &x) |
| \(\mathrm{arcsinh}([x](\cdot))\)
|
|
const Tube | atanh (const Tube &x) |
| \(\mathrm{arctanh}([x](\cdot))\)
|
|
const Tube | atan2 (const Tube &y, const Tube &x) |
| \(\mathrm{arctan2}([y](\cdot),[x](\cdot))\)
|
|
const Tube | atan2 (const Tube &y, const Interval &x) |
| \(\mathrm{arctan2}([y](\cdot),[x])\)
|
|
const Tube | atan2 (const Interval &y, const Tube &x) |
| \(\mathrm{arctan2}([y],[x](\cdot))\)
|
|
const Tube | pow (const Tube &x, int p) |
| \([x]^p(\cdot)\)
|
|
const Tube | pow (const Tube &x, double p) |
| \([x]^p(\cdot)\)
|
|
const Tube | pow (const Tube &x, const Interval &p) |
| \([x]^{[p]}(\cdot)\)
|
|
const Tube | root (const Tube &x, int p) |
| \(\sqrt[p]{[x](\cdot)}\)
|
|
const Tube | min (const Tube &y, const Tube &x) |
| \(\min([y](\cdot),[x](\cdot))\)
|
|
const Tube | min (const Tube &y, const Interval &x) |
| \(\min([y](\cdot),[x])\)
|
|
const Tube | min (const Interval &y, const Tube &x) |
| \(\min([y],[x](\cdot))\)
|
|
const Tube | max (const Tube &y, const Tube &x) |
| \(\max([y](\cdot),[x](\cdot))\)
|
|
const Tube | max (const Tube &y, const Interval &x) |
| \(\max([y](\cdot),[x])\)
|
|
const Tube | max (const Interval &y, const Tube &x) |
| \(\max([y],[x](\cdot))\)
|
|
const Tube | operator+ (const Tube &x) |
| \([x](\cdot)\)
|
|
const Tube | operator+ (const Tube &x, const Tube &y) |
| \([x](\cdot)+[y](\cdot)\)
|
|
const Tube | operator+ (const Tube &x, const Interval &y) |
| \([x](\cdot)+[y]\)
|
|
const Tube | operator+ (const Interval &x, const Tube &y) |
| \([x]+[y](\cdot)\)
|
|
const Tube | operator+ (const Tube &x, const Trajectory &y) |
| \([x](\cdot)+y(\cdot)\)
|
|
const Tube | operator+ (const Trajectory &x, const Tube &y) |
| \(x(\cdot)+[y](\cdot)\)
|
|
const Tube | operator- (const Tube &x) |
| \(-[x](\cdot)\)
|
|
const Tube | operator- (const Tube &x, const Tube &y) |
| \([x](\cdot)-[y](\cdot)\)
|
|
const Tube | operator- (const Tube &x, const Interval &y) |
| \([x](\cdot)-[y]\)
|
|
const Tube | operator- (const Interval &x, const Tube &y) |
| \([x]-[y](\cdot)\)
|
|
const Tube | operator- (const Tube &x, const Trajectory &y) |
| \([x](\cdot)-y(\cdot)\)
|
|
const Tube | operator- (const Trajectory &x, const Tube &y) |
| \(x(\cdot)-[y](\cdot)\)
|
|
const Tube | operator* (const Tube &x, const Tube &y) |
| \([x](\cdot)\cdot[y](\cdot)\)
|
|
const Tube | operator* (const Tube &x, const Interval &y) |
| \([x](\cdot)\cdot[y]\)
|
|
const Tube | operator* (const Interval &x, const Tube &y) |
| \([x]\cdot[y](\cdot)\)
|
|
const Tube | operator* (const Tube &x, const Trajectory &y) |
| \([x](\cdot)\cdot y(\cdot)\)
|
|
const Tube | operator* (const Trajectory &x, const Tube &y) |
| \(x(\cdot)\cdot[y](\cdot)\)
|
|
const Tube | operator/ (const Tube &x, const Tube &y) |
| \([x](\cdot)/[y](\cdot)\)
|
|
const Tube | operator/ (const Tube &x, const Interval &y) |
| \([x](\cdot)/[y]\)
|
|
const Tube | operator/ (const Interval &x, const Tube &y) |
| \([x]/[y](\cdot)\)
|
|
const Tube | operator/ (const Tube &x, const Trajectory &y) |
| \([x](\cdot)/y(\cdot)\)
|
|
const Tube | operator/ (const Trajectory &x, const Tube &y) |
| \(x(\cdot)/[y](\cdot)\)
|
|
const Tube | operator| (const Tube &x, const Tube &y) |
| \([x](\cdot)\sqcup[y](\cdot)\)
|
|
const Tube | operator| (const Tube &x, const Interval &y) |
| \([x](\cdot)\sqcup[y]\)
|
|
const Tube | operator| (const Interval &x, const Tube &y) |
| \([x]\sqcup[y](\cdot)\)
|
|
const Tube | operator| (const Tube &x, const Trajectory &y) |
| \([x](\cdot)\sqcup y(\cdot)\)
|
|
const Tube | operator| (const Trajectory &x, const Tube &y) |
| \(x(\cdot)\sqcup [y](\cdot)\)
|
|
const Tube | operator& (const Tube &x, const Tube &y) |
| \([x](\cdot)\cap[y](\cdot)\)
|
|
const Tube | operator& (const Tube &x, const Interval &y) |
| \([x](\cdot)\cap[y]\)
|
|
const Tube | operator& (const Interval &x, const Tube &y) |
| \([x]\cap[y](\cdot)\)
|
|
const Tube | operator& (const Tube &x, const Trajectory &y) |
| \([x](\cdot)\cap y(\cdot)\)
|
|
const Tube | operator& (const Trajectory &x, const Tube &y) |
| \(x(\cdot)\cap [y](\cdot)\)
|
|
|
const TrajectoryVector | operator+ (const TrajectoryVector &x) |
| \(\mathbf{x}(\cdot)\)
|
|
const TrajectoryVector | operator+ (const TrajectoryVector &x, const TrajectoryVector &y) |
| \(\mathbf{x}(\cdot)+\mathbf{y}(\cdot)\)
|
|
const TrajectoryVector | operator+ (const TrajectoryVector &x, const Vector &y) |
| \(\mathbf{x}(\cdot)+\mathbf{y}\)
|
|
const TrajectoryVector | operator+ (const Vector &x, const TrajectoryVector &y) |
| \(\mathbf{x}+\mathbf{y}(\cdot)\)
|
|
const TrajectoryVector | operator- (const TrajectoryVector &x) |
| \(-\mathbf{x}(\cdot)\)
|
|
const TrajectoryVector | operator- (const TrajectoryVector &x, const TrajectoryVector &y) |
| \(\mathbf{x}(\cdot)-\mathbf{y}(\cdot)\)
|
|
const TrajectoryVector | operator- (const TrajectoryVector &x, const Vector &y) |
| \(\mathbf{x}(\cdot)-\mathbf{y}\)
|
|
const TrajectoryVector | operator- (const Vector &x, const TrajectoryVector &y) |
| \(\mathbf{x}-\mathbf{y}(\cdot)\)
|
|
const TrajectoryVector | operator* (double x, const TrajectoryVector &y) |
| \(x\cdot\mathbf{y}(\cdot)\)
|
|
const TrajectoryVector | operator* (const Trajectory &x, const TrajectoryVector &y) |
| \(x(\cdot)\cdot\mathbf{y}(\cdot)\)
|
|
const TrajectoryVector | operator* (const Trajectory &x, const Vector &y) |
| \(x(\cdot)\cdot\mathbf{y}\)
|
|
const TrajectoryVector | operator* (const Matrix &x, const TrajectoryVector &y) |
| \(x(\cdot)\cdot\mathbf{y}\)
|
|
const TrajectoryVector | operator/ (const TrajectoryVector &x, double y) |
| \(\mathbf{x}(\cdot)/y\)
|
|
const TrajectoryVector | operator/ (const TrajectoryVector &x, const Trajectory &y) |
| \(\mathbf{x}(\cdot)/y(\cdot)\)
|
|
const TrajectoryVector | operator/ (const Vector &x, const Trajectory &y) |
| \(\mathbf{x}/y(\cdot)\)
|
|
const Vector | vecto_product (const Vector &x, const Vector &y) |
| \(\mathbf{x}\times\mathbf{y}\) (or \(\mathbf{x}\wedge\mathbf{y}\) in physics)
|
|
const TrajectoryVector | vecto_product (const TrajectoryVector &x, const Vector &y) |
| \(\mathbf{x}(\cdot)\times\mathbf{y}\) (or \(\mathbf{x}(\cdot)\wedge\mathbf{y}\) in physics)
|
|
const TrajectoryVector | vecto_product (const Vector &x, const TrajectoryVector &y) |
| \(\mathbf{x}\times\mathbf{y}(\cdot)\) (or \(\mathbf{x}\wedge\mathbf{y}(\cdot)\) in physics)
|
|
const TrajectoryVector | abs (const TrajectoryVector &x) |
| \(\mid\mathbf{x}(\cdot)\mid\)
|
|
const TubeVector | operator+ (const TubeVector &x) |
| \([\mathbf{x}](\cdot)\)
|
|
const TubeVector | operator+ (const TubeVector &x, const TubeVector &y) |
| \([\mathbf{x}](\cdot)+[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator+ (const TubeVector &x, const IntervalVector &y) |
| \([\mathbf{x}](\cdot)+[\mathbf{y}]\)
|
|
const TubeVector | operator+ (const IntervalVector &x, const TubeVector &y) |
| \([\mathbf{x}]+[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator+ (const TubeVector &x, const TrajectoryVector &y) |
| \([\mathbf{x}](\cdot)+\mathbf{y}(\cdot)\)
|
|
const TubeVector | operator+ (const TrajectoryVector &x, const TubeVector &y) |
| \(\mathbf{x}(\cdot)+[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator- (const TubeVector &x) |
| \(-[\mathbf{x}](\cdot)\)
|
|
const TubeVector | operator- (const TubeVector &x, const TubeVector &y) |
| \([\mathbf{x}](\cdot)-[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator- (const TubeVector &x, const IntervalVector &y) |
| \([\mathbf{x}](\cdot)-[\mathbf{y}]\)
|
|
const TubeVector | operator- (const IntervalVector &x, const TubeVector &y) |
| \([\mathbf{x}]-[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator- (const TubeVector &x, const TrajectoryVector &y) |
| \([\mathbf{x}](\cdot)-\mathbf{y}(\cdot)\)
|
|
const TubeVector | operator- (const TrajectoryVector &x, const TubeVector &y) |
| \(\mathbf{x}(\cdot)-[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator* (const Tube &x, const TubeVector &y) |
| \([x](\cdot)\cdot[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator* (const Interval &x, const TubeVector &y) |
| \([x]\cdot[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator* (const Tube &x, const IntervalVector &y) |
| \([x](\cdot)\cdot[\mathbf{y}]\)
|
|
const TubeVector | operator* (const Trajectory &x, const TubeVector &y) |
| \(x(\cdot)\cdot[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator/ (const TubeVector &x, const Tube &y) |
| \([\mathbf{x}](\cdot)/[y](\cdot)\)
|
|
const TubeVector | operator/ (const TubeVector &x, const Interval &y) |
| \([\mathbf{x}](\cdot)/[y]\)
|
|
const TubeVector | operator/ (const IntervalVector &x, const Tube &y) |
| \([\mathbf{x}]/[y](\cdot)\)
|
|
const TubeVector | operator/ (const TubeVector &x, const Trajectory &y) |
| \([\mathbf{x}](\cdot)/y(\cdot)\)
|
|
const TubeVector | operator| (const TubeVector &x, const TubeVector &y) |
| \([\mathbf{x}](\cdot)\sqcup[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator| (const TubeVector &x, const IntervalVector &y) |
| \([\mathbf{x}](\cdot)\sqcup[\mathbf{y}]\)
|
|
const TubeVector | operator| (const IntervalVector &x, const TubeVector &y) |
| \([\mathbf{x}]\sqcup[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator| (const TubeVector &x, const TrajectoryVector &y) |
| \([\mathbf{x}](\cdot)\sqcup\mathbf{y}(\cdot)\)
|
|
const TubeVector | operator| (const TrajectoryVector &x, const TubeVector &y) |
| \(\mathbf{x}(\cdot)\sqcup[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator& (const TubeVector &x, const TubeVector &y) |
| \([\mathbf{x}](\cdot)\cap[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator& (const TubeVector &x, const IntervalVector &y) |
| \([\mathbf{x}](\cdot)\cap[\mathbf{y}]\)
|
|
const TubeVector | operator& (const IntervalVector &x, const TubeVector &y) |
| \([\mathbf{x}]\cap[\mathbf{y}](\cdot)\)
|
|
const TubeVector | operator& (const TubeVector &x, const TrajectoryVector &y) |
| \([\mathbf{x}](\cdot)\cap\mathbf{y}(\cdot)\)
|
|
const TubeVector | operator& (const TrajectoryVector &x, const TubeVector &y) |
| \(\mathbf{x}(\cdot)\cap[\mathbf{y}](\cdot)\)
|
|
const TubeVector | abs (const TubeVector &x) |
| \(\mid\mathbf{x}(\cdot)\mid\)
|
|
|
void | serialize_Interval (std::ofstream &bin_file, const Interval &intv) |
| Writes an Interval object into a binary file.
|
|
void | deserialize_Interval (std::ifstream &bin_file, Interval &intv) |
| Creates an Interval object from a binary file.
|
|
|
void | deserialize_IntervalVector (std::ifstream &bin_file, IntervalVector &box) |
| Writes an IntervalVector object into a binary file.
|
|
void | serialize_IntervalVector (std::ofstream &bin_file, const IntervalVector &box) |
| Creates an IntervalVector object from a binary file.
|
|
|
void | serialize_Trajectory (std::ofstream &bin_file, const Trajectory &traj, int version_number=SERIALIZATION_VERSION) |
| Writes a Trajectory object into a binary file.
|
|
void | deserialize_Trajectory (std::ifstream &bin_file, Trajectory *&traj) |
| Creates a Trajectory object from a binary file.
|
|
|
void | serialize_TrajectoryVector (std::ofstream &bin_file, const TrajectoryVector &traj, int version_number=SERIALIZATION_VERSION) |
| Writes a TrajectoryVector object into a binary file.
|
|
void | deserialize_TrajectoryVector (std::ifstream &bin_file, TrajectoryVector *&traj) |
| Creates a TrajectoryVector object from a binary file.
|
|
|
void | serialize_Tube (std::ofstream &bin_file, const Tube &tube, int version_number=SERIALIZATION_VERSION) |
| Writes a Tube object into a binary file (version 2)
|
|
void | deserialize_Tube (std::ifstream &bin_file, Tube *&tube) |
| Creates a Tube object from a binary file.
|
|
|
void | serialize_TubeVector (std::ofstream &bin_file, const TubeVector &tube, int version_number=SERIALIZATION_VERSION) |
| Writes a TubeVector object into a binary file.
|
|
void | deserialize_TubeVector (std::ifstream &bin_file, TubeVector *&tube) |
| Creates a TubeVector object from a binary file.
|
|
|
std::map< SetValue, std::list< IntervalVector > > | SIVIA (const IntervalVector &x, const IntervalVector &y, Ctc &ctc, float precision, bool regular_paving=false, bool display_result=true, const std::string &fig_name="", bool return_result=false, const SetColorMap &color_map=DEFAULT_SET_COLOR_MAP) |
| Executes a SIVIA algorithm from a contractor, and displays the result. SIVIA: Set Inversion Via Interval Analysis.
|
|
std::map< SetValue, std::list< IntervalVector > > | SIVIA (const IntervalVector &x, Ctc &ctc, float precision, bool regular_paving=false, bool display_result=true, const std::string &fig_name="", bool return_result=false, const SetColorMap &color_map=DEFAULT_SET_COLOR_MAP) |
| Executes a SIVIA algorithm from a contractor, and displays the result. SIVIA: Set Inversion Via Interval Analysis.
|
|
|
std::map< SetValue, std::list< IntervalVector > > | SIVIA (const IntervalVector &x, ibex::Sep &sep, float precision, bool regular_paving=false, bool display_result=true, const std::string &fig_name="", bool return_result=false, const SetColorMap &color_map=DEFAULT_SET_COLOR_MAP) |
| Executes a SIVIA algorithm from a separator, and displays the result. SIVIA: Set Inversion Via Interval Analysis.
|
|