Go to the source code of this file.
|
| Parallelepiped | codac2::parallelepiped_inclusion (const IntervalVector &Y, const IntervalMatrix &Jf, const Matrix &Jf_tild, const AnalyticFunction< VectorType > &psi_0, const OctaSym &sigma, const IntervalVector &X) |
| | Used in PEIBOS. Compute a parallelepiped enclosing of \(\mathbf{g}([\mathbf{x}])\) where \(\mathbf{g} = \mathbf{f}\circ \sigma \circ \psi_0\).
|
| |
| std::vector< Parallelepiped > | codac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const std::vector< OctaSym > &Sigma, double epsilon, bool verbose=false) |
| | Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)))\) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
|
| |
| std::vector< Parallelepiped > | codac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const std::vector< OctaSym > &Sigma, double epsilon, const Vector &offset, bool verbose=false) |
| | Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)) + offset) \) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
|
| |
- Date
- 2025
- Author
- Maƫl Godard
- Copyright
- Copyright 2024 Codac Team
- License: GNU Lesser General Public License (LGPL)