|
| double | codac2::split (const IntervalVector &X, double eps, vector< IntervalVector > &boxes) |
| | Recursively split a box until the maximum diameter of each box is less than eps. Note that the resulting boxes are stored in place in the vector boxes.
|
| |
| double | codac2::error (const IntervalVector &Y, const Vector &z, const IntervalMatrix &Jf, const Matrix &A, const IntervalVector &X) |
| | Compute the error term for the parallelepiped inclusion. The error is later used to inflate the flat parallelepiped \(\mathbf{z}+\mathbf{A}\cdot(\left[\mathbf{x}\right]-\bar{\mathbf{x}})\).
|
| |
| Matrix | codac2::inflate_flat_parallelepiped (const Matrix &A, const Vector &e_vec, double rho) |
| | Inflate the flat parallelepiped \(\mathbf{A}\cdot e_{vec}\) by \(\rho\).
|
| |
| Parallelepiped | codac2::parallelepiped_inclusion (const IntervalVector &Y, const IntervalMatrix &Jf, const Matrix &Jf_tild, const AnalyticFunction< VectorType > &psi_0, const OctaSym &sigma, const IntervalVector &X) |
| | Used in PEIBOS. Compute a parallelepiped enclosing of \(\mathbf{g}([\mathbf{x}])\) where \(\mathbf{g} = \mathbf{f}\circ \sigma \circ \psi_0\).
|
| |
| vector< Parallelepiped > | codac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const vector< OctaSym > &Sigma, double epsilon, bool verbose=false) |
| | Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)))\) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
|
| |
| vector< Parallelepiped > | codac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const vector< OctaSym > &Sigma, double epsilon, const Vector &offset, bool verbose=false) |
| | Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)) + offset) \) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
|
| |