codac 2.0.0
Loading...
Searching...
No Matches
codac2_peibos.h File Reference
Include dependency graph for codac2_peibos.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Namespaces

namespace  codac2
 

Functions

double codac2::split (const IntervalVector &X, double eps, vector< IntervalVector > &boxes)
 Recursively split a box until the maximum diameter of each box is less than eps. Note that the resulting boxes are stored in place in the vector boxes.
 
double codac2::error (const IntervalVector &Y, const Vector &z, const IntervalMatrix &Jf, const Matrix &A, const IntervalVector &X)
 Compute the error term for the parallelepiped inclusion. The error is later used to inflate the flat parallelepiped \(\mathbf{z}+\mathbf{A}\cdot(\left[\mathbf{x}\right]-\bar{\mathbf{x}})\).
 
Matrix codac2::inflate_flat_parallelepiped (const Matrix &A, const Vector &e_vec, double rho)
 Inflate the flat parallelepiped \(\mathbf{A}\cdot e_{vec}\) by \(\rho\).
 
Parallelepiped codac2::parallelepiped_inclusion (const IntervalVector &Y, const IntervalMatrix &Jf, const Matrix &Jf_tild, const AnalyticFunction< VectorType > &psi_0, const OctaSym &sigma, const IntervalVector &X)
 Used in PEIBOS. Compute a parallelepiped enclosing of \(\mathbf{g}([\mathbf{x}])\) where \(\mathbf{g} = \mathbf{f}\circ \sigma \circ \psi_0\).
 
vector< Parallelepipedcodac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const vector< OctaSym > &Sigma, double epsilon, bool verbose=false)
 Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)))\) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
 
vector< Parallelepipedcodac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const vector< OctaSym > &Sigma, double epsilon, const Vector &offset, bool verbose=false)
 Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)) + offset) \) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
 

Detailed Description

Date
2025
Author
Maƫl Godard
License: GNU Lesser General Public License (LGPL)