codac 2.0.0
Loading...
Searching...
No Matches
codac2_peibos.h File Reference
#include <type_traits>
#include "codac2_Matrix.h"
#include "codac2_IntervalVector.h"
#include "codac2_IntervalMatrix.h"
Include dependency graph for codac2_peibos.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Namespaces

namespace  codac2
 

Functions

Parallelepiped codac2::parallelepiped_inclusion (const IntervalVector &Y, const IntervalMatrix &Jf, const Matrix &Jf_tild, const AnalyticFunction< VectorType > &psi_0, const OctaSym &sigma, const IntervalVector &X)
 Used in PEIBOS. Compute a parallelepiped enclosing of \(\mathbf{g}([\mathbf{x}])\) where \(\mathbf{g} = \mathbf{f}\circ \sigma \circ \psi_0\).
 
std::vector< Parallelepipedcodac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const std::vector< OctaSym > &Sigma, double epsilon, bool verbose=false)
 Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)))\) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
 
std::vector< Parallelepipedcodac2::PEIBOS (const AnalyticFunction< VectorType > &f, const AnalyticFunction< VectorType > &psi_0, const std::vector< OctaSym > &Sigma, double epsilon, const Vector &offset, bool verbose=false)
 Compute a set of parallelepipeds enclosing \(\mathbf{f}(\sigma(\psi_0([-1,1]^m)) + offset) \) for each symmetry \(\sigma\) in the set of symmetries \(\Sigma\). Note that \(\left\{\psi_0,\Sigma\right\}\) form a gnomonic atlas.
 

Detailed Description

Date
2025
Author
Maƫl Godard
License: GNU Lesser General Public License (LGPL)