32 inline EvalMode operator&(EvalMode a, EvalMode b)
33 {
return static_cast<EvalMode
>(
static_cast<int>(a) &
static_cast<int>(b)); }
35 inline EvalMode operator|(EvalMode a, EvalMode b)
36 {
return static_cast<EvalMode
>(
static_cast<int>(a) |
static_cast<int>(b)); }
39 requires std::is_base_of_v<AnalyticTypeBase,T>
40 class AnalyticFunction :
public FunctionBase<AnalyticExpr<T>>
44 AnalyticFunction(
const FunctionArgsList&
args,
const ScalarExprList& y)
45 requires(std::is_same_v<T,VectorType>)
48 assert_release(y->belongs_to_args_list(this->args()) &&
49 "Invalid argument: variable not present in input arguments");
53 AnalyticFunction(
const FunctionArgsList&
args,
const AnalyticExprWrapper<T>& y)
56 assert_release(y->belongs_to_args_list(this->args()) &&
57 "Invalid argument: variable not present in input arguments");
61 AnalyticFunction(
const AnalyticFunction<T>& f)
65 template<
typename... X>
66 AnalyticExprWrapper<T> operator()(
const X&... x)
const
71 template<
typename... Args>
72 auto real_eval(
const Args&... x)
const
74 return eval(x...).mid();
77 template<
typename... Args>
78 typename T::Domain eval(
const EvalMode& m,
const Args&... x)
const
80 check_valid_inputs(x...);
84 case EvalMode::NATURAL:
86 return eval_<true>(x...).a;
89 case EvalMode::CENTERED:
91 auto x_ = eval_<false>(x...);
92 auto flatten_x = IntervalVector(cart_prod(x...));
93 assert(x_.da.rows() == x_.a.size() && x_.da.cols() == flatten_x.size());
95 if constexpr(std::is_same_v<T,ScalarType>)
96 return x_.m + (x_.da*(flatten_x-flatten_x.mid()))[0];
98 else if constexpr(std::is_same_v<T,VectorType>)
99 return x_.m + (x_.da*(flatten_x-flatten_x.mid())).col(0);
103 static_assert(std::is_same_v<T,MatrixType>);
104 return x_.m + (x_.da*(flatten_x-flatten_x.mid()))
105 .reshaped(x_.m.rows(), x_.m.cols());
109 case EvalMode::DEFAULT:
112 auto x_ = eval_<false>(x...);
117 return eval(EvalMode::NATURAL, x...);
121 auto flatten_x = IntervalVector(cart_prod(x...));
123 if constexpr(std::is_same_v<T,ScalarType>)
124 return x_.a & (x_.m + (x_.da*(flatten_x-flatten_x.mid()))[0]);
126 else if constexpr(std::is_same_v<T,VectorType>)
128 assert(x_.da.rows() == x_.a.size() && x_.da.cols() == flatten_x.size());
129 return x_.a & (x_.m + (x_.da*(flatten_x-flatten_x.mid())).col(0));
134 static_assert(std::is_same_v<T,MatrixType>);
135 assert(x_.da.rows() == x_.a.size() && x_.da.cols() == flatten_x.size());
136 return x_.a & (x_.m +(x_.da*(flatten_x-flatten_x.mid()))
137 .reshaped(x_.m.rows(),x_.m.cols()));
144 template<
typename... Args>
145 typename T::Domain eval(
const Args&... x)
const
147 return eval(EvalMode::NATURAL | EvalMode::CENTERED, x...);
150 template<
typename... Args>
151 auto diff(
const Args&... x)
const
153 check_valid_inputs(x...);
154 return eval_<false>(x...).da;
157 Index output_size()
const
159 if constexpr(std::is_same_v<T,ScalarType>)
163 std::pair<Index,Index> oshape = output_shape();
164 return oshape.first * oshape.second;
168 std::pair<Index,Index> output_shape()
const
170 if constexpr(std::is_same_v<T,ScalarType>)
172 else return this->
expr()->output_shape();
175 friend std::ostream& operator<<(std::ostream& os, [[maybe_unused]]
const AnalyticFunction<T>& f)
178 for(
size_t i = 0 ; i < f.args().size() ; i++)
179 os << (i!=0 ?
"," :
"") << f.args()[i]->name();
180 os <<
") ↦ " << f.expr()->str();
187 friend class CtcInverse_;
190 void add_value_to_arg_map(ValuesMap& v,
const D& x, Index i)
const
192 assert(i >= 0 && i < (Index)this->
args().size());
193 assert_release(size_of(x) == this->
args()[i]->size() &&
"provided arguments do not match function inputs");
195 using D_TYPE =
typename ValueType<D>::Type;
197 IntervalMatrix d = IntervalMatrix::zero(size_of(x), this->
args().total_size());
200 for(Index j = 0 ; j < i ; j++)
201 p += this->
args()[j]->size();
203 for(Index k = p ; k < p+size_of(x) ; k++)
206 v[this->
args()[i]->unique_id()] =
207 std::make_shared<D_TYPE>(
typename D_TYPE::Domain(x).mid(), x, d,
true);
210 template<
typename... Args>
211 void fill_from_args(ValuesMap& v,
const Args&... x)
const
214 (add_value_to_arg_map(v, x, i++), ...);
218 void intersect_value_from_arg_map(
const ValuesMap& v, D& x, Index i)
const
220 assert(v.find(this->args()[i]->unique_id()) != v.end() &&
"argument cannot be found");
221 x &= std::dynamic_pointer_cast<typename ValueType<D>::Type>(v.at(this->
args()[i]->unique_id()))->a;
224 template<
typename... Args>
225 void intersect_from_args(
const ValuesMap& v, Args&... x)
const
228 (intersect_value_from_arg_map(v, x, i++), ...);
231 template<
bool NATURAL_EVAL,
typename... Args>
232 auto eval_(
const Args&... x)
const
236 if constexpr(
sizeof...(Args) == 0)
237 return this->
expr()->fwd_eval(v, 0, NATURAL_EVAL);
241 fill_from_args(v, x...);
242 return this->
expr()->fwd_eval(v, cart_prod(x...).size(), NATURAL_EVAL);
246 template<
typename... Args>
247 void check_valid_inputs(
const Args&... x)
const
249 [[maybe_unused]] Index n = 0;
250 ((n += size_of(x)), ...);
252 assert_release(this->
_args.total_size() == n &&
253 "Invalid arguments: wrong number of input arguments");
256 inline void update_var_names()
258 for(
const auto& v : this->
_args)
260 this->
_y->replace_arg(v->unique_id(), std::dynamic_pointer_cast<ExprBase>(v));
264 AnalyticFunction(
const FunctionArgsList&, std::initializer_list<ScalarExpr>) ->
265 AnalyticFunction<VectorType>;
269 AnalyticFunction<typename ValueType<T>::Type>;
A container class to manage a collection of function arguments.
Definition codac2_FunctionArgsList.h:25
A base class for functions (either analytic functions, or set functions).
Definition codac2_FunctionBase.h:41
const FunctionArgsList & args() const
Definition codac2_FunctionBase.h:93
const FunctionArgsList _args
Definition codac2_FunctionBase.h:208
FunctionBase(const std::vector< std::reference_wrapper< VarBase > > &args, const std::shared_ptr< AnalyticExpr< T > > &y)
Definition codac2_FunctionBase.h:52
const std::shared_ptr< AnalyticExpr< T > > _y
Definition codac2_FunctionBase.h:207
const std::shared_ptr< AnalyticExpr< T > > & expr() const
Definition codac2_FunctionBase.h:103