Minimal contractor for the polar constraint: x = rho*cos(theta) y = rho*sin(theta) theta = angle(x,y) sqr(rho) = sqr(x)+sqr(y)
More...
#include <codac_CtcPolar.h>
|
| CtcPolar () |
| Creates the contractor.
|
|
virtual void | contract (IntervalVector &x) |
| \(\mathcal{C}_{\textrm{polar}}\big([\mathbf{x}]\big)\)
|
|
void | contract (Interval &x, Interval &y, Interval &rho, Interval &theta) |
| \(\mathcal{C}_{\textrm{polar}}\big([x],[y],[\rho],[\theta]\big)\)
|
|
Minimal contractor for the polar constraint: x = rho*cos(theta) y = rho*sin(theta) theta = angle(x,y) sqr(rho) = sqr(x)+sqr(y)
◆ contract() [1/2]
virtual void codac::CtcPolar::contract |
( |
IntervalVector & | x | ) |
|
|
virtual |
\(\mathcal{C}_{\textrm{polar}}\big([\mathbf{x}]\big)\)
- Parameters
-
x | the 4d box of domains: (x,y,rho,theta) |
◆ contract() [2/2]
void codac::CtcPolar::contract |
( |
Interval & | x, |
|
|
Interval & | y, |
|
|
Interval & | rho, |
|
|
Interval & | theta ) |
\(\mathcal{C}_{\textrm{polar}}\big([x],[y],[\rho],[\theta]\big)\)
- Parameters
-
x | first Cartesian component |
y | second Cartesian component |
rho | first polar component |
theta | second polar component |
The documentation for this class was generated from the following file: