Go to the source code of this file.
|
Ellipsoid | codac2::operator+ (const Ellipsoid &e1, const Ellipsoid &e2) |
| Compute the Minkowski sum of two ellipsoids.
|
|
Ellipsoid | codac2::linear_mapping (const Ellipsoid &e, const Matrix &A, const Vector &b) |
| Guaranteed linear evaluation A*e+b, considering the rounding errors.
|
|
Ellipsoid | codac2::unreliable_linear_mapping (const Ellipsoid &e, const Matrix &A, const Vector &b) |
| Nonrigorous linear evaluation A*e+b.
|
|
Ellipsoid | codac2::nonlinear_mapping (const Ellipsoid &e, const AnalyticFunction< VectorType > &f) |
| (Rigorous?) non-linear evaluation f(e)
|
|
Ellipsoid | codac2::nonlinear_mapping (const Ellipsoid &e, const AnalyticFunction< VectorType > &f, const Vector &trig, const Vector &q) |
| (Rigorous?) non-linear evaluation f(e), with parameters
|
|
Matrix | codac2::nonlinear_mapping_base (const Matrix &G, const Matrix &J, const IntervalMatrix &J_box, const Vector &trig, const Vector &q) |
| (Rigorous?) non-linear evaluation f(e), from Jacobian information
|
|
std::ostream & | codac2::operator<< (std::ostream &os, const Ellipsoid &e) |
| Streams out an Ellipsoid.
|
|
- Date
- 2024
- Author
- Morgan Louédec
- Copyright
- Copyright 2024 Codac Team
- License: GNU Lesser General Public License (LGPL)
◆ operator+()
Compute the Minkowski sum of two ellipsoids.
- Parameters
-
e1 | first ellipsoid |
e2 | second ellipsoid |
- Returns
- the Minkowski sum
◆ linear_mapping()
Ellipsoid codac2::linear_mapping |
( |
const Ellipsoid & | e, |
|
|
const Matrix & | A, |
|
|
const Vector & | b ) |
Guaranteed linear evaluation A*e+b, considering the rounding errors.
- Parameters
-
e | input ellipsoid |
A | matrix |
b | vector |
- Returns
- a rigorous outer enclosure of the linear mapping
◆ unreliable_linear_mapping()
Ellipsoid codac2::unreliable_linear_mapping |
( |
const Ellipsoid & | e, |
|
|
const Matrix & | A, |
|
|
const Vector & | b ) |
Nonrigorous linear evaluation A*e+b.
- Note
- This function is used in linear_mapping() and provides a faster output than its guaranteed counterpart.
- Parameters
-
e | input ellipsoid |
A | matrix |
b | vector |
- Returns
- a nonrigorous approximation of the linear mapping
◆ nonlinear_mapping() [1/2]
Ellipsoid codac2::nonlinear_mapping |
( |
const Ellipsoid & | e, |
|
|
const AnalyticFunction< VectorType > & | f ) |
(Rigorous?) non-linear evaluation f(e)
- Parameters
-
e | input ellipsoid |
f | non-linear analytical function |
- Returns
- a (rigorous?) outer enclosure of the non-linear mapping
◆ nonlinear_mapping() [2/2]
Ellipsoid codac2::nonlinear_mapping |
( |
const Ellipsoid & | e, |
|
|
const AnalyticFunction< VectorType > & | f, |
|
|
const Vector & | trig, |
|
|
const Vector & | q ) |
(Rigorous?) non-linear evaluation f(e), with parameters
- Parameters
-
e | input ellipsoid |
f | non-linear analytical function |
trig | (?) |
q | (?) |
- Returns
- a (rigorous?) outer enclosure of the non-linear mapping
◆ nonlinear_mapping_base()
Matrix codac2::nonlinear_mapping_base |
( |
const Matrix & | G, |
|
|
const Matrix & | J, |
|
|
const IntervalMatrix & | J_box, |
|
|
const Vector & | trig, |
|
|
const Vector & | q ) |
(Rigorous?) non-linear evaluation f(e), from Jacobian information
- Parameters
-
G | (?) |
J | approximated Jacobian matrix of f |
J_box | reliable enclosure of the Jacobian matrix of f |
trig | (?) |
q | (?) |
- Returns
- a (rigorous?) outer enclosure of the non-linear mapping
◆ operator<<()
std::ostream & codac2::operator<< |
( |
std::ostream & | os, |
|
|
const Ellipsoid & | e ) |
Streams out an Ellipsoid.
- Parameters
-
os | the stream to be updated |
e | the ellipsoid stream out |
- Returns
- a reference to the updated stream