.. _sec-functions-analytic-operators:
Analytic operators
==================
.. raw:: html
Codac provides a list of operators for calculating intervals, defining expressions and constructing contractors.
Operators currently available
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following table lists the mathematical operators currently available. The availability is indicated for four operations:
1. Natural forward evaluation
2. Centered-form forward evaluation
3. Differentiation
4. Backward (reverse) evaluation
When operators are available for operations 2--3, then an ``AnalyticFunction`` can be built upon them and the ``.eval(EvalMode.CENTERED, ...)`` and ``.diff(...)`` methods can be successfully called. When operators are available for operation 4, then analytic contractors such as ``CtcInverse`` will work.
.. role:: bg-ok
.. role:: bg-bok
.. role:: bg-nok
.. role:: bg-title
.. role:: vertical
.. role:: raw-html(raw)
:format: html
.. |okk| replace:: :bg-ok:`✓`
.. |bok| replace:: :bg-bok:`✓`
.. |nok| replace:: :bg-nok:`✗`
.. |N| replace:: :vertical:`Natur.`
.. |C| replace:: :vertical:`Centr.`
.. |D| replace:: :vertical:`Diff.`
.. |CHI| replace:: :math:`\begin{split}\chi(x_1,x_2,x_3) =\\ \begin{cases}x_2 & \text{if } x_1 \leqslant 0, \\x_3 & \text{if } x_1>0.\end{cases}\end{split}`
.. |AbsOp| replace:: :raw-html:`AbsOp
`
.. |AcosOp| replace:: :raw-html:`AcosOp
`
.. |AsinOp| replace:: :raw-html:`AsinOp
`
.. |AtanOp| replace:: :raw-html:`AtanOp
`
.. |CeilOp| replace:: :raw-html:`CeilOp
`
.. |ChiOp| replace:: :raw-html:`ChiOp
`
.. |CosOp| replace:: :raw-html:`CosOp
`
.. |CoshOp| replace:: :raw-html:`CoshOp
`
.. |DetOp| replace:: :raw-html:`DetOp
`
.. |ExpOp| replace:: :raw-html:`ExpOp
`
.. |FloorOp| replace:: :raw-html:`FloorOp
`
.. |LogOp| replace:: :raw-html:`LogOp
`
.. |SignOp| replace:: :raw-html:`SignOp
`
.. |SinOp| replace:: :raw-html:`SinOp
`
.. |SinhOp| replace:: :raw-html:`SinhOp
`
.. |SqrOp| replace:: :raw-html:`SqrOp
`
.. |SqrtOp| replace:: :raw-html:`SqrtOp
`
.. |TanOp| replace:: :raw-html:`TanOp
`
.. |TanhOp| replace:: :raw-html:`TanhOp
`
.. |AddOp| replace:: :raw-html:`AddOp
`
.. |SubOp| replace:: :raw-html:`SubOp
`
.. |MulOp| replace:: :raw-html:`MulOp
`
.. |DivOp| replace:: :raw-html:`DivOp
`
.. |MaxOp| replace:: :raw-html:`MaxOp
`
.. |MinOp| replace:: :raw-html:`MinOp
`
.. |ModOp| replace:: :raw-html:`ModOp
`
.. |PowOp| replace:: :raw-html:`PowOp
`
.. |Atan2Op| replace:: :raw-html:`Atan2Op
`
.. |ComponentOp| replace:: :raw-html:`ComponentOp
`
.. |SubvectorOp| replace:: :raw-html:`SubvectorOp
`
.. |VectorOp| replace:: :raw-html:`VectorOp
`
.. |MatrixOp| replace:: :raw-html:`MatrixOp
`
Only the :bg-ok:`✓` operators are supported at the moment.
If you notice any mathematical operators missing from the list below, feel free to contribute to the library. You can submit your suggestions or pull requests on the `GitHub repository of Codac `_.
| The sources of the operators are available in the ``operators`` folder:
| https://github.com/codac-team/codac/blob/codac2/src/core/operators
.. table:: List of available operators in Codac
:name: operators-table
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+-------------------------+------------+
| | | | | Fwd eval. | Bwd. eval. |
| | | | +--------+--------+-------+ |
| Operator | Syntax | Struct | Operands type | |N| | |C| | |D| | |
+=====================================================+======================+===============+=====================================+========+========+=======+============+
| :bg-title:`Unary operations` |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`|x|` | ``abs(x)`` | |AbsOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\arccos(x)` | ``acos(x)`` | |AcosOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\arcsin(x)` | ``asin(x)`` | |AsinOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\arctan(x)` | ``atan(x)`` | |AtanOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\lceil x \rceil` | ``ceil(x)`` | |CeilOp| | ``x``: scalar ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\cos(x)` | ``cos(x)`` | |CosOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\cosh(x)` | ``cosh(x)`` | |CoshOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\det(\mathbf{A})` | ``det(A)`` | |DetOp| | ``A``: matrix ||bok| ||nok| ||nok| ||bok| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\exp(x)` | ``exp(x)`` | |ExpOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\lfloor x \rfloor` | ``floor(x)`` | |FloorOp| | ``x``: scalar ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\log(x)` | ``log(x)`` | |LogOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\mathrm{sgn}(x)` | ``sign(x)`` | |SignOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\sin(x)` | ``sin(x)`` | |SinOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\sinh(x)` | ``sinh(x)`` | |SinhOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`x^2` | ``sqr(x)`` | |SqrOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\sqrt{x}` | ``sqrt(x)`` | |SqrtOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\tan(x)` | ``tan(x)`` | |TanOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\tanh(x)` | ``tanh(x)`` | |TanhOp| | ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :bg-title:`Binary operations` |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`x_1+x_2` | ``x1+x2`` | |AddOp| | ``x1``, ``x2``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{x}_1+\mathbf{x}_2` | ``x1+x2`` | | ``x1``, ``x2``: vector ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{X}_1+\mathbf{X}_2` | ``X1+X2`` | | ``x1``, ``x2``: matrix ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`x_1-x_2` | ``x1-x2`` | |SubOp| | ``x1``, ``x2``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{x}_1-\mathbf{x}_2` | ``x1-x2`` | | ``x1``, ``x2``: vector ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{X}_1-\mathbf{X}_2` | ``X1-X2`` | | ``x1``, ``x2``: matrix ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`x_1\cdot x_2` | ``x1*x2`` | |MulOp| | ``x1``, ``x2``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`x_1\cdot\mathbf{x}_2` | ``x1*x2`` | | ``x1``: scalar, ``x2``: vector ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{x}_1\cdot x_2` | ``x1*x2`` | | ``x1``: vector, ``x2``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`x_1\cdot\mathbf{X}_2` | ``x1*X2`` | | ``x1``: scalar, ``X2``: matrix ||okk| ||nok| ||nok| ||nok| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{x}_1\cdot\mathbf{x}_2` | ``x1*x2`` | | ``x1``: row, ``x2``: vector ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{X}_1\cdot\mathbf{x}_2` | ``X1*x2`` | | ``X1``: matrix, ``x2``: vector ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{X}_1\cdot\mathbf{X}_2` | ``X1*X2`` | | ``X1``: matrix, ``X2``: matrix ||okk| ||nok| ||nok| ||nok| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`x_1/x_2` | ``x1/x2`` | |DivOp| | ``x1``, ``x2``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{x}_1/x_2` | ``x1/x2`` | | ``X1``: vector, ``x2``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{X}_1/x_2` | ``X1/x2`` | | ``X1``: matrix, ``x2``: scalar ||okk| ||nok| ||nok| ||nok| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\max(x_1,x_2)` | ``max(x1,x2)`` | |MaxOp| | ``x1``, ``x2``: scalar ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\min(x_1,x_2)` | ``min(x1,x2)`` | |MinOp| | ``x1``, ``x2``: scalar ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`x_1\bmod x_2` | ``mod(x1,x2)`` | |ModOp| | ``x1``, ``x2``: scalar ||nok| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`(x_1)^{x_2}` | | ``pow(x1,x2)`` | |PowOp| | ``x1``, ``x2``: scalar ||okk| ||okk| ||okk| ||okk| |
| | | ``x1^x2`` | | | | | | |
| | | ``x1**x2`` (py) | | | | | | |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\mathrm{arctan2}(y,x)` | ``atan2(y,x)`` | |Atan2Op| | ``y``, ``x``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :bg-title:`Ternary operations` |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| |CHI| | ``chi(x1,x2,x3)`` | |ChiOp| | ``x1``, ``x2``, ``x3``: scalar ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :bg-title:`Vectorial / matricial operations` |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`x_i` (vector coeff) | ``x[i]`` | |ComponentOp| | ``x``: vector, ``i``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+ +-------------------------------------+--------+--------+-------+------------+
| :math:`X_{ij}` (mat. coeff) | ``X(i,j)`` | | ``X``: matrix, ``i``, ``j``: scalar ||okk| ||nok| ||nok| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\mathbf{x}_{i:j}` (subvector) | ``x.subvector(i,j)`` | |SubvectorOp| | | ``x``: vector expression ||okk| ||okk| ||okk| ||okk| |
| | | | | ``i``, ``j``: scalar | | | | |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`[x_1,x_2,\dots]^\intercal` | ``vec(x1,x2,...)`` | |VectorOp| | ``x1``, ``...``: scalar ||okk| ||okk| ||okk| ||okk| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
| :math:`\left(\mathbf{x}_1,\mathbf{x}_2,\dots\right)`| ``mat(x1,x2,...)`` | |MatrixOp| | ``x1``, ``...``: vector ||nok| ||nok| ||nok| ||nok| |
+-----------------------------------------------------+----------------------+---------------+-------------------------------------+--------+--------+-------+------------+
Note that the operator :math:`\det` is only available for :math:`1\times 1` and :math:`2\times 2` matrices.
Expression involving a non-supported centered-form operation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If an operator, for which the centered form is not defined, is involved in an expression, then this expression cannot be evaluated using the centered form (calculation is disabled for the entire operation). A simple natural evaluation will then be computed.
Direct use of operators
^^^^^^^^^^^^^^^^^^^^^^^
Operators can be used directly without building an ``AnalyticFunction``. They are organized in structures named ``Op`` and each structure provides ``.fwd()`` and ``.bwd()`` methods.
For example, the operator ``cos`` is proposed with:
.. tabs::
.. code-tab:: py
class CosOp:
@staticmethod
def fwd(x1):
# Default natural forward evaluation
# ...
@staticmethod
def bwd(y, x1):
# Backward evaluation
# ...
.. code-tab:: c++
struct CosOp
{
// Default natural forward evaluation
static Interval fwd(const Interval& x1);
// Backward evaluation
static void bwd(const Interval& y, Interval& x1);
};
| For the names of available structures, please refer to Table :ref:`operators-table`.
| An example of use of ``CosOp`` is given below:
.. tabs::
.. group-tab:: Python
.. literalinclude:: src.py
:language: py
:start-after: [9-beg]
:end-before: [9-end]
:dedent: 4
.. group-tab:: C++
.. literalinclude:: src.cpp
:language: c++
:start-after: [9-beg]
:end-before: [9-end]
:dedent: 4