.. _sec-ellipsoids-class: The Ellipsoid class =================== *Main author:* `Morgan Louédec `_ This page describes the Ellipsoid classes used in Codac 2 as well as some functions with ellipsoids. Additional mathematical information is provided :ref:`here`. Class Ellipsoid --------------- The Ellipsoid class can be used to declare a n-dimensional ellipsoid. The ellipsoid is defined by a center point $\boldsymbol{\mu}$ and a shape matrix $\boldsymbol{\varGamma}$. Ellipsoids can be drawn in VIBES via the *.draw\_ellipsoid* function, as illustrated by Figure 1. .. tabs:: .. code-tab:: py # Init drawing figure fig1 = Figure2D('Linear and nonlinear mappings', GraphicOutput.VIBES) fig1.set_axes(axis(0, [-0.1, 1.3]), axis(1, [-1.2, 0.2])) fig1.set_window_properties([0, 100], [500, 500]) mu = Vector([1., 0.]) G = Matrix([[0.05, 0.0], [0., 0.05]]) e1 = Ellipsoid(mu, G) fig1.draw_ellipsoid(e1, [Color.red(), Color.red(0.3)]) # drawing .. code-tab:: c++ // Init drawing figure Figure2D fig1("Linear and nonlinear mappings", GraphicOutput::VIBES); fig1.set_axes(axis(0, {-0.1, 1.3}), axis(1, {-1.2, 0.2})); fig1.set_window_properties({0, 100}, {500, 500}); Vector mu({1., 0.}); // center point Matrix G({{0.05, 0.0},{0., 0.05}}); // shape matrix Ellipsoid e1(mu,G); // ellipsoid fig1.draw_ellipsoid(e1, {Color::red(), Color::red(0.3)}); // draw cout << e1 << endl; /* Ellipsoid 2d: mu=[ 1 ; 0 ] G= [[ 0.05 , 0 ] [ 0 , 0.05 ]] */ Linear and nonlinear mappings ----------------------------- Linear and nonlinear mappings can be applied on ellipsoids. For every ellipsoid $ex$, square matrix $A$ and vector $b$, the function *unreliable_linear_mapping* compute the ellipsoid $ey=A\cdot ex + b$. Nonlinear mappings can be declared with the AnalyticFunction class. For every ellipsoid $ex$ and nonlinear mapping $h$, the function *nonlinear_mapping* compute an ellipsoid $ey$ that enclose the image of $ex$ by $h$ such that $h(ex)\in ey$ .. figure:: linear_and_nonlinear_mappings.png :width: 400 Figure 1 - Illustration of successive linear and nonlinear mappings on ellipsoids .. tabs:: .. code-tab:: py # declare nonlinear mappings x = VectorVar(2) h = AnalyticFunction ([x], vec(x[0] + 0.1 * x[1], -0.2 * sin(x[0]) + 0.9 * x[1])) # linear mapping N = 10 e2 = Ellipsoid(e1) for i in range(0,N): A = h.diff(e2.mu).mid() b = Vector(h.eval(e2.mu).mid() - A * e2.mu) e2 = unreliable_linear_mapping(e2, A, b) fig1.draw_ellipsoid(e2, [Color.green(), Color.green(0.3)]) # nonlinear mapping e3 = Ellipsoid(e1) for i in range(0,N): e3 = nonlinear_mapping(e3, h) fig1.draw_ellipsoid(e3, [Color.blue(), Color.blue(0.3)]) .. code-tab:: c++ // declare nonlinear mappings VectorVar x(2); AnalyticFunction h{ {x}, vec(x[0] + 0.1 * x[1], -0.2 * sin(x[0]) + 0.9 * x[1])}; // linear mapping by linearizing h int N = 10; Ellipsoid e2 = Ellipsoid(e1); for (int i = 0; i < N; i++) { Matrix A = h.diff(e2.mu).mid(); Vector b(h.eval(e2.mu).mid() - A * e2.mu); e2 = unreliable_linear_mapping(e2, A, b); fig1.draw_ellipsoid(e2, {Color::green(), Color::green(0.3)}); } // nonlinear mapping Ellipsoid e3 = Ellipsoid(e1); for (int i = 0; i < N; i++) { e3 = nonlinear_mapping(e3, h); fig1.draw_ellipsoid(e3, {Color::blue(), Color::blue(0.3)}); } Projection of the ellipsoids ---------------------------- One can illustrate high dimensional ellipsoids with 2D projection. In Codac, the projection is made by the Figure2D object via the *.draw_ellipsoid* function : the ellipsoid is projected on the plane (0,i,j), where the axis i and j are specified via the *.set_axes* function of the figure. .. figure:: projections.png :width: 800 Figure 2 - Projections of the ellipsoids $e4$, $e5$ and $e6$ in the 3D XYZ space .. tabs:: .. code-tab:: py mu4 = Vector([1., 0., 0.]) G4 = Matrix([[1., 0.5, 0.], [0.5, 2., 0.2], [0., 0.2, 3.]]) e4 = Ellipsoid(mu4, G4) G5 = 0.7 * G4 e5 = Ellipsoid(mu4, G5) G6 = Matrix([[2., 0., 0.5], [0., 1., 0.2], [0., 0.2, 3.]]) e6 = Ellipsoid(mu4, G6) fig2 = Figure2D('Projected ellipsoid xy', GraphicOutput.VIBES) fig3 = Figure2D('Projected ellipsoid yz', GraphicOutput.VIBES) fig4 = Figure2D('Projected ellipsoid xz', GraphicOutput.VIBES) fig2.set_window_properties([700, 100], [500, 500]) fig3.set_window_properties([1200, 100], [500, 500]) fig4.set_window_properties([0, 600], [500, 500]) fig2.set_axes(axis(0, [-3, 3]), axis(1, [-3, 3])) fig3.set_axes(axis(1, [-3, 3]), axis(2, [-3, 3])) fig4.set_axes(axis(0, [-3, 3]), axis(2, [-3, 3])) fig2.draw_ellipsoid(e4, [Color.blue(), Color.blue(0.3)]) fig3.draw_ellipsoid(e4, [Color.blue(), Color.blue(0.3)]) fig4.draw_ellipsoid(e4, [Color.blue(), Color.blue(0.3)]) fig2.draw_ellipsoid(e5, [Color.red(), Color.red(0.3)]) fig3.draw_ellipsoid(e5, [Color.red(), Color.red(0.3)]) fig4.draw_ellipsoid(e5, [Color.red(), Color.red(0.3)]) fig2.draw_ellipsoid(e6, [Color.green(), Color.green(0.3)]) fig3.draw_ellipsoid(e6, [Color.green(), Color.green(0.3)]) fig4.draw_ellipsoid(e6, [Color.green(), Color.green(0.3)]) .. code-tab:: c++ Ellipsoid e4 { {1., 0., 0.}, // mu {{1., 0.5, 0.}, // G {0.5, 2., 0.2}, {0., 0.2, 3.}} }; Ellipsoid e5 { e4.mu, // mu 0.7 * e4.G // G }; Ellipsoid e6 { e4.mu, // mu {{2., 0., 0.5}, // G {0., 1., 0.2}, {0., 0.2, 3.}} }; Figure2D fig2("Projected ellipsoid xy", GraphicOutput::VIBES); Figure2D fig3("Projected ellipsoid yz", GraphicOutput::VIBES); Figure2D fig4("Projected ellipsoid xz", GraphicOutput::VIBES); fig2.set_window_properties({700, 100}, {500, 500}); fig3.set_window_properties({1200, 100}, {500, 500}); fig4.set_window_properties({0, 600}, {500, 500}); fig2.set_axes(axis(0, {-3, 3}), axis(1, {-3, 3})); fig3.set_axes(axis(1, {-3, 3}), axis(2, {-3, 3})); fig4.set_axes(axis(0, {-3, 3}), axis(2, {-3, 3})); fig2.draw_ellipsoid(e4, {Color::blue(), Color::blue(0.3)}); fig3.draw_ellipsoid(e4, {Color::blue(), Color::blue(0.3)}); fig4.draw_ellipsoid(e4, {Color::blue(), Color::blue(0.3)}); fig2.draw_ellipsoid(e5, {Color::red(), Color::red(0.3)}); fig3.draw_ellipsoid(e5, {Color::red(), Color::red(0.3)}); fig4.draw_ellipsoid(e5, {Color::red(), Color::red(0.3)}); fig2.draw_ellipsoid(e6, {Color::green(), Color::green(0.3)}); fig3.draw_ellipsoid(e6, {Color::green(), Color::green(0.3)}); fig4.draw_ellipsoid(e6, {Color::green(), Color::green(0.3)}); Inclusion tests --------------- The function *.is_concentric_subset* can test if two concentric ellipsoids are strictly included in each other. The function return a BoolInterval that can be: [ true ] if the inclusion is verified / [ true, false ] if the method is not able to conclude .. tabs:: .. code-tab:: py print('\nInclusion test e5 in e4: ', e5.is_concentric_subset(e4)) print('\nInclusion test e4 in e5: ', e4.is_concentric_subset(e5)) print('\nInclusion test e4 in e6: ', e6.is_concentric_subset(e4)) print('\nInclusion test e5 in e6: ', e5.is_concentric_subset(e6)) .. code-tab:: c++ cout << "\nInclusion test e5 in e4: " << e5.is_concentric_subset(e4) << endl; cout << "Inclusion test e4 in e5: " << e4.is_concentric_subset(e5) << endl; cout << "Inclusion test e4 in e6: " << e6.is_concentric_subset(e4) << endl; cout << "Inclusion test e5 in e6: " << e5.is_concentric_subset(e6) << endl; /* Inclusion test e5 in e4: [ true ] -> e5 is included in e4 Inclusion test e4 in e5: [ true, false ] -> not able to conclude Inclusion test e4 in e6: [ true, false ] Inclusion test e5 in e6: [ true, false ] */ Degenerated Ellipsoids & singular mappings ------------------------------------------ It is also possible to have Degenerated Ellipsoids and to apply singular mappings on ellipsoids. There functionalities are handled by the Ellipsoid class and the nonlinear_mapping function .. figure:: singular_case.png :width: 600 Figure 3 - Singular cases. $e11$ is the image of $e9$ by the nonlinear mapping $h2$. The degenerate ellipsoid $e12$ is the image of $e10$ by the singular mapping $h3$ .. tabs:: .. code-tab:: py fig5 = Figure2D('singular mappings and degenerated ellipsoids', GraphicOutput.VIBES) fig5.set_axes(axis(0, [-0.5, 2]), axis(1, [-1.5, 1.])) fig5.set_window_properties([700, 600], [500, 500]) e9 = Ellipsoid(Vector([0., 0.5]), Matrix([[0.25, 0.], [0., 0.]])) e10 = Ellipsoid(Vector([0., -0.5]), Matrix([[0.25, 0.], [0., 0.25]])) fig5.draw_ellipsoid(e9, [Color.blue(), Color.red(0.3)]) fig5.draw_ellipsoid(e10, [Color.red(), Color.red(0.3)]) h2 = AnalyticFunction([x], vec(x[0] + 0.5 * x[1] + 0.75, -0.5 * sin(x[0]) + 0.9 * x[1] + 0.1*0.5)) h3 = AnalyticFunction([x], vec(x[0] + 0.5 * x[1] + 1.25, x[0] + 0.5 * x[1]-0.25)) e11 = nonlinear_mapping(e9, h2) e12 = nonlinear_mapping(e10, h3) fig5.draw_ellipsoid(e11, [Color.green(), Color.green(0.3)]) fig5.draw_ellipsoid(e12, [Color.green(), Color.green(0.3)]) print('\nDegenerate ellipsoid e9 (blue):\n', e9) print('\nImage of degenerated ellipsoid e11 (green):\n', e11) print('\nNon-degenerate ellipsoid e10 (red):\n', e10) print('\nImage of singular mapping e12 (green):\n', e12) .. code-tab:: c++ Figure2D fig5("singular mappings and degenerated ellipsoids", GraphicOutput::VIBES); fig5.set_axes(axis(0, {-0.5, 2}), axis(1, {-1.5, 1.})); fig5.set_window_properties({700, 600}, {500, 500}); Ellipsoid e9 { {0., 0.5}, // mu {{0.25, 0.}, // G {0., 0.}} }; Ellipsoid e10 { {0., -0.5}, // mu {{0.25, 0.}, // G {0., 0.25}} }; fig5.draw_ellipsoid(e9, {Color::blue(), Color::red(0.3)}); fig5.draw_ellipsoid(e10, {Color::red(), Color::red(0.3)}); AnalyticFunction h2{ {x}, vec(x[0] + 0.5 * x[1] + 0.75, -0.5 * sin(x[0]) + 0.9 * x[1] + 0.1*0.5)}; AnalyticFunction h3{ {x}, vec(x[0] + 0.5 * x[1] + 1.25, x[0] + 0.5 * x[1]-0.25)}; Ellipsoid e11 = nonlinear_mapping(e9, h2); Ellipsoid e12 = nonlinear_mapping(e10, h3); fig5.draw_ellipsoid(e11, {Color::green(), Color::green(0.3)}); fig5.draw_ellipsoid(e12, {Color::green(), Color::green(0.3)}); cout << "\nDegenerate ellipsoid e9 (blue):\n" << e9 << endl; cout << "\nImage of degenerated ellipsoid e11 (green):\n" << e11 << endl; cout << "\nNon-degenerate ellipsoid e10 (red):\n" << e10 << endl; cout << "\nImage of singular mapping e12 (green):\n" << e12 << endl; /* Degenerate ellipsoid e9 (blue): Ellipsoid 2d: mu=[ 0 ; 0.5 ] G= [[ 0.25 , 0 ] [ 0 , 0 ]] Image of degenerated ellipsoid e11 (green): Ellipsoid 2d: mu=[ 1 ; 0.5 ] G= [[ 0.500005 , 0.00310879 ] [ -0.250002 , 0.00621758 ]] Non-degenerate ellipsoid e10 (red): Ellipsoid 2d: mu=[ 0 ; -0.5 ] G= [[ 0.25 , 0 ] [ 0 , 0.25 ]] Image of singular mapping e12 (green): Ellipsoid 2d: mu=[ 1 ; -0.5 ] G= [[ 0.698771 , 2.20794e-16 ] [ 0.698771 , -2.20794e-16 ]] */ Stability analysis ------------------ The function stability_analysis can compute a bassin of attraction for discrete time systems. .. figure:: stability.png :width: 600 Figure 6 - Stability analysis for the discrete system $\boldsymbol{x}_{k+1} = \boldsymbol{h4}\left(\boldsymbol{x}_k\right)$ .. tabs:: .. code-tab:: py # TODO in the code .. code-tab:: c++ // pendulum example AnalyticFunction h4{ {x}, vec(x[0] + 0.5 * x[1] , x[1] + 0.5 * (-x[1]-sin(x[0])))}; Ellipsoid e13 { Vector::zero(2), // mu Matrix::zero(2,2) // G }; Ellipsoid e13_out { Vector::zero(2), // mu Matrix::zero(2,2) // G }; int alpha_max = 1; if(stability_analysis(h4,alpha_max, e13, e13_out) == BoolInterval::TRUE) { cout << "\nStability analysis: the system is stable" << endl; cout << "Ellipsoidal domain of attraction e13 (red):" << endl; cout << e13 << endl; cout << "Outter enclosure e13_out of the Image of e13 by h4 (green):" << endl; cout << e13_out << endl; } else { cout << "\nStability analysis: the method is not able to conclude" << endl; } Figure2D fig6("Stability analysis - pendulum example", GraphicOutput::VIBES); fig6.set_axes(axis(0, {-0.1, 0.1}), axis(1, {-0.1, 0.1})); fig6.set_window_properties({1200, 600}, {500, 500}); fig6.draw_ellipsoid(e13, {Color::red(), Color::red(0.3)}); fig6.draw_ellipsoid(e13_out, {Color::green(), Color::green(0.3)}); /* Stability analysis: the system is stable Ellipsoidal domain of attraction e13 (red): Ellipsoid 2d: mu=[ 0 ; 0 ] G= [[ 0.0530036 , -0.0162023 ] [ -0.0162023 , 0.0599474 ]] Outter enclosure e13_out of the Image of e13 by h4 (green): Ellipsoid 2d: mu=[ 0 ; 2.4895e-17 ] G= [[ 0.0449537 , 0.0137871 ] [ -0.0346424 , 0.0381183 ]] */