
Une très brève introduction aux
intervalles pour la robotique mobile

Tutoriel aux JNRR – Octobre 2023

Ce document est téléchargeable sur :
www.codac.io/tmp/jnrr-2023/exercice_slam.pdf

A. Introduction

Figure 1: Trajectory of R between a set of
landmarks.

We propose to apply interval tools for solving a classical state
estimation problem.

A tank robot R, described by the state vector x ∈ R3 depicting
its position (x1, x2)ᵀ and its heading x3, is evolving among a
set of landmarks bk ∈ R2. It is equipped with a compass for
measuring its heading x3. The speed is assumed to be constant.

The system is described by the following state equations:{
ẋ(t) = f

(
x(t), u(t)

)
(evolution equation)

dki = g
(
x(ti),b

k
)

(observation equation)
(1)

The evolution of the state is given by:

ẋ = f(x, u) =

 10 cos(x3)
10 sin(x3)

u

 , (2)

and the system input u (rotation rate) is expressed as:

u(t) = 3 sin2(t) +
t

100
. (3)

The observation function g is the distance function between a
position (x1, x2)ᵀ and a landmark (bk1 , b

k
2)ᵀ.

B. Codac

1. Install the Codac library on your computer. Codac is available in C++ and Python3 (now also in Matlab),
on Linux, Windows, MacOS systems. See: http://codac.io/installation

2. Download and launch the VIBes viewer.
See: http://codac.io/install/01-installation.html#graphical-tools

3. Download the file of this lesson, available at http://codac.io/tmp/jnrr-2023/exercice.py. Compile
and/or execute the example. You should obtain the Figure 1 in the VIBes interface, without the landmarks.

The following instructions will be given in Python, but feel free to use C++ or Matlab if you prefer.

1

www.codac.io/tmp/jnrr-2023/exercice_slam.pdf
http://codac.io/installation
http://codac.io/install/01-installation.html#graphical-tools
http://codac.io/tmp/jnrr-2023/exercice.py

C. Deadreckoning

The robot knows its initial state: x(0) = (0, 0, 0)ᵀ. Deadreckoning consists in estimating the following positions
of the robot without exteroceptive measurements (i.e. without distances from the landmarks). In this section,
we will compute the set of feasible positions of R, considering only heading measurements and the evolution
function f .

4. The set of feasible positions along time is a tube (interval of trajectories). We create a tube [x](t) using:

x = TubeVector(tdomain, dt, 3)

where tdomain is the temporal window [t0, tf] of the simulation, and dt is a discretization parameter.
Last argument is the dimension of the tube.
At this point, ∀t ∈ [t0, tf], [x](t) = [−∞,∞]3: the states are completely unknown.
This can be verified, for instance at t = 0, with: print(x(0.))

5. The headings x3(t) are measured with some uncertainties known to be bounded in [−0.03, 0.03]. We set
these bounded measurements in the last component of the tube vector [x](t):

Heading measurement with bounded uncertainties

x[2] = Tube(x_truth[2], dt) + Interval(-0.03,0.03)

6. The initial state x(0) (position and heading) is known, which can be implemented in the tube with:

x.set([0,0,0], 0.) # setting a vector value at t=0

[v](t) [x](t)

Cf

Cderiv

Now that a domain (a tube) has been defined for enclosing the estimates together
with their uncertainties, it remains to define contractors for narrowing their bounds.
In deadreckoning, only Eq. (2) is considered: ẋ(t) = f(x(t)). This can be processed
with two contractors, one for dealing with v(t) = f(x(t)), and one for ẋ(t) = v(t).
The new tube [v](t) will enclose the feasible derivatives of the possible states in [x](t).

7. As for [x](t), create another TubeVector for [v](t), called v.

8. Create a contractor1 for v(t) = f(x(t)):

ctc_f = CtcFunction(Function("x[3]", "v[3]", "(v[0]-10*cos(x[2]) ; v[1]-10*sin(x[2]))"))

This contractor expresses the constraint under the form f(x,v)=0

9. Create a contractor2 for ẋ(t) = v(t):

ctc.deriv # object already instanciated in the library, nothing to do

Contractors are algorithms for reducing sets of feasible values (intervals, boxes, tubes..). A network of contrac-
tors can be created using a ContractorNetwork (CN), that will manage the contractors automatically.

10. Combine the contractors in a CN with:

cn = ContractorNetwork()

cn.add(ctc_f, [x,v])

cn.add(ctc.deriv, [x,v])

11. At this point, you have implemented an algorithm for deadreckoning.
The state estimation can now be triggered with:

cn.contract(True)

1CtcFunction, see more: http://codac.io/manual/04-static-contractors/01-ctc-function.html
2CtcDeriv, see more: http://codac.io/manual/05-dynamic-contractors/01-ctc-deriv.html

2

http://codac.io/manual/04-static-contractors/01-ctc-function.html
http://codac.io/manual/05-dynamic-contractors/01-ctc-deriv.html

12. The contracted tube [x](t) can be displayed with:

fig_map.add_tube(x, "[x](t)", 0, 1)

fig_map.show(1.)

You should obtain the following result:

Figure 2: In blue: tube [x](t) enclosing the estimated trajectories of the robot. The actual but unknown
trajectory is depicted in black. With interval methods, the computations are guaranteed: the actual trajectory
cannot be outside the tube. However, the tube may be large in case of poor localization, as it is the case up to
now without state observations.

D. Range-only localization

The obtained tube grows with time, illustrating a significant drift of the robot. We now rely on distances
measured from known landmarks for reducing this drift. This amounts to a non-linear state estimation problem:
function g of System (1) is a distance function. Non-linearities can be difficult to solve with conventional
methods.

13. Define five landmarks with:

b = [(6,12),(-2,-5),(-3,20),(3,4),(-10,0)]

14. In a loop, for each ti ∈ {0, 1, . . . , 15}, compute the distance measured from a random landmark:

for ti in np.arange(0,15):

k = random.randint(0,len(b)-1) # a random landmark is perceived

d = sqrt(sqr(x_truth(ti)[0]-b[k][0])+sqr(x_truth(ti)[1]-b[k][1]))

15. The measurements come with some errors (not computed here) that are known to be bounded within
[−0.03, 0.03]. We use intervals for enclosing the observations:

...

d += Interval(-0.03,0.03)

16. In the same for loop, we add contractors in the ContractorNetwork in order to improve the localisation
of the robot: the state observations are added to the set of constraints by means of distance contractors:

...

pi = IntervalVector(3) # will represent the state at time ti

cn.add(ctc.eval, [ti,pi,x,v]) # constraint pi=x(ti), dot(x)=v

cn.add(ctc.dist, [pi[0],pi[1],b[k][0],b[k][1],d]) # constraint d=g(pi,b)

3

The cn object that you have implemented is now the following:

[v](t) [x](t)

Cf

Cderiv

Cdist
[y1]

Cdist

Cdist

[ba]

[y2]

[bb]

[y3]

Ceval

Ceval

Ceval [p3]

[p2]

[p1]

[t1]

[t2]

[t3]

Figure 3: Example of CN related to System (1), involving three measurements and two landmarks. Boxes are
contractor operators, circles are related domains: intervales, boxes and tubes.

17. Outside the iterations, trigger again the ContractorNetwork and display the results:

cn.contract(True)

fig_map.add_landmarks(b, 0.4)

fig_map.show(1.)

You should obtain the following result:

Figure 4: In gray: the former tube of Figure 2. In blue, the new contracted tube, considering distance mea-
surements from the landmarks.

18. What if we have no knowledge about the initial position of the robot?
Try to remove the condition set in Question 6, and zoom towards the initial position.

E. Challenge: Simultaneous Localization and Mapping (SLAM)

Update the script in order to deal with a SLAM problem, in which the position of the landmarks is estimated
together with the positions of the robot. Note that in SLAM, the initial condition set in Question 6 is mandatory.

4

	Introduction
	Codac
	Deadreckoning
	Range-only localization
	Challenge: Simultaneous Localization and Mapping (SLAM)

